Thermodynamics of Micellization of Ionic Liquids C₆mimBr and Orientation Dynamics of Water for C₆mimBr–Water Mixtures: A Dielectric Spectroscopy Study

Xiaoqing Fan and Kongshuang Zhao*

College of Chemistry, Beijing Normal University, Beijing 100875, China

ABSTRACT: The aggregation behavior of C₆mimBr and its interaction with water at different concentrations and temperatures have been investigated by dielectric spectroscopy over frequency ranges from 500 MHz to 40 GHz. Dielectric determinations show that micellar aggregations form when the C₆mimBr concentration is higher than 0.85 M, and the size of micellar aggregations varies inversely to temperature. The thermodynamic quantities of the micellization at different temperatures, ΔGₘ, ΔHₘ, and ΔSₘ were calculated, and it was found that the main driving forces of C₆mimBr aggregation were controlled by different thermodynamic quantities at different temperatures: the micelle formation process is controlled by an enthalpy effect at low temperature while it is entropically driven at high temperature. Two remarkable relaxations that originate from the orientation polarization of “bulk water” and “bound water” interacting with C₆mimBr were observed at about 8.2 and 15 GHz. The relaxation parameters obtained by fitting the dielectric spectra data were used to estimate the number of bound water per C₆mim⁺ in the micellar core. The enthalpy and entropy closely linked to the relaxation processes of bound water and bulk water were calculated using the relaxation time according to Eyring equations. The average number of hydrogen bonds of a C₆mimBr–water system in different microenvironments was calculated, and the essence of cooperative orientation dynamics of water was described.

1. INTRODUCTION

Over the past decade, ionic liquids (ILs) have received much attention due to their unique properties, such as insignificant vapor pressures, high ion conductivity, high stability, nonflammability, and wide electrochemical window, and have been widely applied in organic synthesis and catalysis, separation science, and life science.¹⁻³ On the basis of the design ability of ILs, one type of functional IL with a hydrophilic headgroup and hydrophobic tail analogous to traditional ionic surfactants was synthesized. Because of their inherent amphiphilic properties, they can be self-assembled into a variety of aggregates in aqueous solution and have received a great deal of attention in recent years.⁴⁻⁵ A large amount of research has focused on the interactions among amphiphilic molecules and with solvent because the physical process of amphiphilic self-assembly was governed by the balance between varieties of interactions.⁶⁻⁷ The main effect on the aggregation behavior includes several factors: alkyl chain length, type of cations, and the nature of the counterions.⁸⁻⁹ From the viewpoint of hydrophobic interaction, it is certain that the aggregation becomes more easy with an increase of the alkyl chain length of ILs. Recently, most studies have focused on the alkyl chain length from 8 to 16.¹⁰⁻¹¹ It is worth considering the length of the hydrocarbon chains in a given IL from well-defined aggregates. Some researchers¹²⁻¹³ reported that oblate aggregates form at the critical micelle concentration (CMC) and the radius of aggregates increases with increasing C₆mimBr concentration. However, there exist different opinions and observations that C₆mim⁺¹⁴ has no CMC in an aqueous solution and C₆mim⁺¹⁵ does not micellize but forms an inhomogeneous solution of larger aggregates. The tendency of hydrophobic molecules to cluster in water is readily understood in terms of the dependence of hydrophobic solvation on solute size.⁸ Hence, understanding the aggregation mechanism of ILs with critical alkyl chain length is fundamental and important for explaining the essential reasons for the aggregation processes of amphiphilic ILs and promoting their applications.

In addition to the effect of alkyl chain length, the interaction between amphiphilic ILs and solvent played a key role in the amphiphile assembly.¹⁶ In the mixtures of ILs and water, the polar network of ILs was broken up by the added water molecules, which induced the microphase segregation between polar and nonpolar domains of ILs. Consequently, the nonpolar group (cation—cation) aggregation and water (water—anion—water) network were formed, indicating the existence of different organized nanostructures in ILs solution.¹⁷,¹⁸ Meanwhile, some water molecules are confined within a small region of amphiphilic ILs because of the hydrogen bond interactions,¹⁹⁻²⁰ therefore their dynamical properties in these microenvironments are vastly different from those in bulk water. Moreover, the structural reorganization and
the peculiar thermodynamic signatures of water molecules surrounding hydrophobic molecule or hydrophilic surface are still being debated. In short, the study of interaction between amphiphilic ILs and water and the resulting structural reorganization of water molecules that surround the ILs also help us understand the nature of their solution and aggregation behavior.

At present, the physicochemical property and aggregation structure of amphiphilic ILs have been studied by a variety of traditional physical techniques. For example, the surface tension measurements can provide CMC, surface tension at the CMC, adsorption efficiency, and effectiveness of surface tension reduction. The degree of counterion dissociation and CMC in different temperatures can be measured by an electrical conductivity method based on which thermodynamics quantities of micelle formation process were calculated. The information on micellar aggregation number \(N \), the morphology, and size of aggregation can be obtained by means of fluorescence quenching, nuclear magnetic resonance (NMR), and small-angle neutron scattering methods (SANS). However, there are few reports in the research about microstructure changes before and after micelle formation such as the number of bound water per ILs, the change in the microenvironment surrounding ILs, and the structural reorganization of water molecules. This exactly reflects the nature of the solubility and aggregation behavior of amphiphilic ILs.

It is generally known that dielectric relaxation spectroscopy (DRS), owing to its sensitivity to the polarization process, has been extensively used to provide insight into the structural and dynamics properties of all kinds of liquid systems at molecular and macroscopic levels. Shikata et al. presented a detailed DRS study on the aqueous solutions of the two simplest carboxylate ions, sodium formate and sodium acetate. They found that very few (<2 per anion) water molecules were irrotationally bound, and water molecules with reduced dynamics result from the relatively strong hydrophilic interaction of water with the \(\sim \text{COO}^- \) moiety.

In the present paper, the dielectric spectra of a series of mixtures composed of \(\text{C}_6\text{mimBr} \) with short alkyl chain and water have been investigated in a wide temperature range. By analyzing the direct current (dc) conductivity of \(\text{C}_6\text{mimBr} \) aqueous solution in different temperatures, the main driving forces of \(\text{C}_6\text{mimBr} \) aggregation are fully discussed. On the basis of the relaxation parameters of two dielectric relaxations, the numbers of bound water per \(\text{C}_6\text{mim}^- \) in the micellar core were obtained. Furthermore, orientation dynamics of water molecules in different microenvironments were explored. It is expected that the results obtained in the present work can contribute more information to the fundamental understanding of amphiphilic ILs and their applications.

2. MATERIALS AND METHODS

2.1. Materials. The ILs \(\text{C}_6\text{mimBr} \) (purity >99%, 4.7 mol/L) was purchased from Shanghai Cheng Jie Chemical Co. Ltd., China. The residual chloride in this IL was less than 800 ppm, and the water content was less than 1000 ppm. The molecular structure of \(\text{C}_6\text{mimBr} \) is depicted in Scheme 1. A series of \(\text{C}_6\text{mimBr} \) concentrations were prepared from 0.4 to 2.11 M (from 0.83% to 6.46% in the mole fraction unit). Doubly distilled water was used throughout all of the experiments.

2.2. Dielectric Measurements. The dielectric spectra were measured with an Aglient E8362B PNA series network analyzer (Agilent Technologies, made in America) equipped with an Aglient 85070E open-ended coaxial probe (Agilent Technologies, made in America), which covers the frequency ranges from 500 MHz to 40 GHz. All measurements were carried out in the temperature ranges from 288.2 to 323.2 K (±0.2 K). The permittivity \(\varepsilon \) and total dielectric loss \(\varepsilon'' \) were automatically calculated as functions of frequency by the built-in software of this measuring system, which was calibrated in accordance with the procedures recommended by the manufacturers. The dielectric measurement in each temperature was completed in seconds.

2.3. Determination of Dielectric Parameters. The dielectric relaxation parameters were obtained by fitting the following equation to the experimental dielectric data

\[
\varepsilon^* = \varepsilon(\omega) - j\varepsilon''(\omega) = \varepsilon_0 + \sum_i \Delta\varepsilon_i \left(1 + \frac{j\omega\tau_i}{\varepsilon_0}\right)^{\beta_i}
\]

where, \(\varepsilon_0 \) is the high frequency limit of permittivity, \(\Delta\varepsilon_i \) is the dielectric increment (or relaxation intensity) of the relaxation mode \(i \), \(\beta_i = 1/(2\pi\tau_i) \) \((j \) is the characteristic relaxation frequency) denotes the relaxation time of the relaxation mode \(i \), and \(\beta_i \) \((0 < \beta_i \leq 1) \) is the parameter related to the distribution of relaxation time.

3. RESULTS AND DISCUSSION

3.1. Microwave Dielectric Behavior for the Binary System \(\text{C}_6\text{mimBr} \)–Water. Figure 1 shows the dielectric spectra (a) and dielectric loss spectra (b) (which are the real and imaginary parts of complex permittivity \(\varepsilon^* \) in eq 1, respectively) for \(\text{C}_6\text{mimBr} \) aqueous solution in the concentration range of 0.4–2.11 M. Remarkably, both permittivity and dielectric loss spectra show distinct dielectric relaxation at the frequency ranges from 500 MHz to 40 GHz. The dielectric increment and relaxation frequency decrease as the \(\text{C}_6\text{mimBr} \) concentration increases as shown by arrows. The steep rise in dielectric loss with the decrease of frequency below about 5 GHz (circled by a dashed ring in Figure 1b) originates from higher dc conductivity \(\kappa_0 \). All of the relaxation parameters that appear in eq 1 are obtained by fitting these data in Figure 1a with eq 1 and are summarized in Table 3.

For the aqueous system with higher conductivity, eq 1 is generally shown as

\[
\varepsilon^* = \varepsilon(\omega) - j\frac{\varepsilon(\omega)}{\varepsilon_0} = \varepsilon(\omega) - j\varepsilon''(\omega) - j\frac{\kappa_0}{\varepsilon_0}
\]
That is to say, the real dielectric loss $\varepsilon_{\text{rel}}''$ is obtained by subtracting the dc conductivity contribution $\varepsilon_{\text{dc}}''$ from the total dielectric loss $\varepsilon''(\omega) = \kappa(\omega)/\varepsilon_0 \omega$. The dc conductivity contribution can be expressed as:

$$
\varepsilon_{\text{dc}}'' = \kappa_l/\varepsilon_0 \omega \quad (3)
$$

Here, κ_l was obtained by fitting the raw dielectric loss with eq 3 and is the scaling dependence of total dielectric loss with a slope -1 on ω. All of the dielectric spectra data shown in Figure 1 were recalculated, and the corrected dielectric loss spectra were obtained according to the above method. Figure 2 shows an example of dielectric loss spectra after subtraction of the dc conductivity contribution for 0.633 M C$_6$mimBr solution.

3.2. Micellization of C$_6$mimBr in Water. The values of κ_l for C$_6$mimBr solution, which are extracted from imaginary parts of complex permittivity ε'', are plotted as a function of concentration in Figure 3. With the gradual increase of concentration, an abrupt change in the conductivity-concentration curve can be observed at a concentration of about 0.8 M. That is, micellar aggregations form when the C$_6$mimBr concentration is larger than 0.8 M, which is taken as the CMC of C$_6$mimBr. In the low concentration domain, the polar network of C$_6$mimBr is entirely broken up by the intruding water, so κ linearly increases with the concentration due to the growing number of C$_6$mim$^+$ and Br$^-$ ions. However, when the concentration is larger than 0.8 M, the increase was inhibited for the formation of the nonpolar group aggregation. This is because the partial anions Br$^-$ are confined to the aggregation surface.

To confirm the micelle formation, the CMC and the slopes were obtained by fitting the κ–C data in Figure 3 with eq 4 and are summarized in Table 1.

$$
K = S_1 C + p(S_2 - S_1) \ln \left(\frac{1 + \exp[(C - \text{CMC})/p]}{1 + \exp(-\text{CMC}/p)} \right) \quad (4)
$$

Here, S_1 and S_2 are the gradients of the κ–C curve below and above the CMC, respectively, p is the width of the transition, C is the C$_6$mimBr concentration, and CMC represents the central point of the transition. The values of CMC are in good agreement with those obtained by surface tension, fluorescent probe technique, and NMR as shown in Table 1.

In Table 1, the degree of counterion dissociation, α, was obtained from the ratio of the slopes above and below the break point of CMC. $1 - \alpha$ is defined as the degree of counterion binding and denoted by γ, which indicates the ability of the counterions in C$_6$mimBr binding to micellar surface. Table 1 shows a larger value of γ (0.74–0.84), which indicates the larger volume of the C$_6$mimBr micelle. This is because the electrostatic attraction between C$_6$mim$^+$ and Br$^-$ is stronger than the self-repulsion between C$_6$mim$^+$ groups; consequently, the binding capacity of Br$^-$ is enhanced. As a result, N of the micelle increases and the volume also becomes larger. In addition, γ decreases with the increase in temperature, which suggests that C$_6$mimBr forms smaller micelle aggregation in
higher temperature, consistent with the results from dynamic light scattering37 and SANS.38

Further, the fundamental parameter of micellar aggregation, \(N \), was estimated by the following equation, \(N = (4\pi l^3)/3V \) (where \(V \) is the effective hydrophobic chain volume and \(l \) is the alkyl chain length in the micellar core, whose values are given by Tanford’s formulas39). \(N \) for \(\text{C}_6\text{mimBr} \) is determined to be 13, which is also comparable to other results for \(\text{C}_n\text{mimBr} \).13

Compared with \(N \) of \(\text{C}_6\text{mimBr} \), \(\text{C}_{10}\text{mimBr} \), and \(\text{C}_{12}\text{mimBr} \) (\(N = 21, 38, \) and \(45 \), respectively),22 it can be seen that \(N \) increases with an incremental increase of the alkyl chain length by one methylene group.

3.3. Thermodynamic Analysis of Micelle Formation

The thermodynamic quantities of the micellization for ionic univalent surfactants, the standard free energy \(\Delta G_m \), the standard enthalpy \(\Delta H_m \) and the standard entropy \(\Delta S_m \) were calculated through the following relations (\(x_{\text{CMC}} \) in eq 5 is the CMC in mole fraction unit) and using the above values of CMC and \(\gamma \), and these values are listed in Table 2.40

\[
\Delta G_m = (2 - \gamma)RT \ln x_{\text{CMC}}
\]

(5)

\[
\frac{\partial(\Delta G_m/T)}{\partial(1/T)} = \Delta H_m
\]

(6)

\[
\Delta S_m = \frac{\Delta H_m - \Delta G_m}{T}
\]

(7)

Table 2. Thermodynamic Quantities of Micelle Formation Calculated Using Eqs 5–7 for \(\text{C}_6\text{mimBr} \) under Different Temperatures

<table>
<thead>
<tr>
<th>(T (K))</th>
<th>(\Delta G_m) (kJ/mol)</th>
<th>(\Delta H_m) (kJ/mol)</th>
<th>(-T\Delta S_m) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>288.2</td>
<td>-18.58</td>
<td>-17.08</td>
<td>-1.49</td>
</tr>
<tr>
<td>296.7</td>
<td>-18.63</td>
<td>-14.13</td>
<td>-4.50</td>
</tr>
<tr>
<td>313.2</td>
<td>-19.13</td>
<td>-8.93</td>
<td>-10.20</td>
</tr>
<tr>
<td>323.2</td>
<td>-19.44</td>
<td>-6.86</td>
<td>-12.58</td>
</tr>
</tbody>
</table>

As listed in Table 2, the values of \(\Delta G_m \) are all negative. This means micellization of \(\text{C}_n\text{mimBr} \) in aqueous solution is a spontaneous process. In this process, the \(\Delta H_m \) is associated with the transfer of \(\text{C}_n\text{mimBr} \) monomer from the aqueous environment to the micelle. Before the micellization process of \(\text{C}_n\text{mimBr} \), the interaction that in f luences the enthalpy is from mainly a hydrogen bond between \(\text{C}_n\text{mimBr} \) and water molecular. While when the micelle formed, the self-repulsion between head groups and hydrophobic effect of the hydrocarbon chain of \(\text{C}_n\text{mimBr} \) are dominant. The negative \(\Delta H_m \) indicates that the energy for breaking the hydrogen bond between \(\text{C}_n\text{mimBr} \) and water is lower than that released in micelle formation. This is perhaps because the counterions \(\text{Br}^- \) reduced the self-repulsion between the head groups and the micellar stabilization was enhanced. In addition, the positive \(\Delta S_m \) can be considered to be caused by the release of the water molecules frozen around the \(\text{C}_n\text{mimBr} \) hydrophobic tail. Therefore, this micellization process can be regarded as the balance between the transfer of \(\text{C}_n\text{mimBr} \) monomer from the aqueous environment to the micelle and the release of water molecules.31

The values of \(\Delta H_m \) are negative and the values of \(\Delta S_m \) are positive, suggesting that the micelle formation for \(\text{C}_n\text{mimBr} \) is driven collectively by enthalpy and entropy. The thermodynamic quantities \(\Delta G_m \), \(\Delta H_m \), and \(\Delta S_m \) obtained for micelle formation of \(\text{C}_n\text{mimBr} \) are plotted as a function of temperature in Figure 4. \(\Delta H_m \) increases and \(-T\Delta S_m \) decreases with rising temperature and at 311 K (crossing temperature), and \(-T\Delta S_m \) intersects with \(\Delta H_m \). This means that an enthalpy term \(\Delta H_m \) plays the dominant role to the negative \(\Delta G_m \) below the crossing temperature, while the contribution from entropy term \(\Delta S_m \) becomes dominant above the temperature. In other words, the micelle formation process for \(\text{C}_n\text{mimBr} \) is controlled by the enthalpy effect at lower temperature, while it is entropically driven at higher temperature.

3.4. Variance in the Number of Bound Water in the Micellization

3.4.1. Dielectric Relaxation of Water for the \(\text{C}_n\text{mimBr} \)–Water System

Figure 5 shows the three-dimensional representations for the concentration dependence of the dielectric spectra (after eliminating the contribution of dc conductivity) for \(\text{C}_n\text{mimBr} \) aqueous solution in the concentration range of 0.4–2.11 M, from which an asymmetric peak of dielectric loss can be observed. The position of the peak has little change with \(\text{C}_n\text{mimBr} \) concentration, located around 10 GHz, and its intensity gradually decreases with the increase of concentration.

For pure water, one relaxation process is needed to describe the complex permittivity at the frequency ranges from 500 MHz to 40 GHz. It is apparent from the asymmetric signal that the addition of \(\text{C}_n\text{mimBr} \) introduces a slower debye relaxation process. In order to examine the dielectric spectra in detail and identify the subrelaxation involved in the main relaxation with asymmetrical distribution, a typical cut at the concentration of
addition, the dielectric increment of bound water \(\Delta \varepsilon \) responsible for a relaxation process generally used to describe the relation between the dielectric increases faintly with the increase of C6mimBr concentration: that the relaxation time for both bulk water and bound water C6mimBr solution with different concentrations.

The numbers of bound water in Table 4 are plotted as a function of the concentration of C6mimBr solution in Figure 7. Interestingly, at the C6mimBr concentration below the CMC, the number of bound water per free C6mim+ cation Z_w is about 20 and did not vary with the concentration of C6mimBr. However, when the C6mimBr concentration was above the CMC where the C6mimBr micelle aggregates formed, the number of bound water per C6mim+ for the micelle \(Z_w^{mic} \) started to decrease gradually until a relatively stable value of about 8–9 was reached, suggesting the stable micelle formed with the release of water molecules. According to the theoretical calculations of the C6mim+ cation\(^{27,48}\), in which

Table 3. Concentration Dependence of the Dielectric Relaxation Parameters of C6mimBr Solution at 296.7 K

<table>
<thead>
<tr>
<th>(C) (M)</th>
<th>(\varepsilon_1)</th>
<th>(\varepsilon_m)</th>
<th>(\varepsilon_b)</th>
<th>(\Delta \varepsilon_{bound})</th>
<th>(\tau_{bound}) (ps)</th>
<th>(\tau_{bulk}) (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>87.14</td>
<td>12.86</td>
<td>74.28</td>
<td>8.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.422</td>
<td>73.83</td>
<td>57.97</td>
<td>15.86</td>
<td>56.13</td>
<td>19.36</td>
<td>9.36</td>
</tr>
<tr>
<td>0.633</td>
<td>72.86</td>
<td>51.02</td>
<td>21.84</td>
<td>46.43</td>
<td>20.78</td>
<td>11.17</td>
</tr>
<tr>
<td>0.760</td>
<td>68.60</td>
<td>45.25</td>
<td>23.35</td>
<td>41.04</td>
<td>22.22</td>
<td>9.90</td>
</tr>
<tr>
<td>0.844</td>
<td>65.60</td>
<td>42.46</td>
<td>23.14</td>
<td>38.52</td>
<td>23.23</td>
<td>11.35</td>
</tr>
<tr>
<td>0.971</td>
<td>65.60</td>
<td>41.09</td>
<td>24.51</td>
<td>34.79</td>
<td>25.20</td>
<td>11.44</td>
</tr>
<tr>
<td>1.055</td>
<td>64.60</td>
<td>40.52</td>
<td>24.08</td>
<td>35.26</td>
<td>27.28</td>
<td>11.68</td>
</tr>
<tr>
<td>1.182</td>
<td>62.03</td>
<td>38.72</td>
<td>21.88</td>
<td>32.63</td>
<td>28.32</td>
<td>11.86</td>
</tr>
<tr>
<td>1.266</td>
<td>61.35</td>
<td>39.47</td>
<td>21.93</td>
<td>32.31</td>
<td>26.71</td>
<td>11.78</td>
</tr>
<tr>
<td>1.688</td>
<td>51.28</td>
<td>31.48</td>
<td>5.01</td>
<td>23.31</td>
<td>32.63</td>
<td>11.86</td>
</tr>
<tr>
<td>2.110</td>
<td>46.85</td>
<td>24.49</td>
<td>7.21</td>
<td>22.36</td>
<td>17.28</td>
<td>14.47</td>
</tr>
</tbody>
</table>

Figure 6. Dielectric loss spectrum of 0.422 M C6mimBr aqueous solution at 296.7 K. Black open circles represent the dielectric loss after eliminating the effect of dc conductivity, the black line represents the best-fit curve with eq 1, and shaded areas indicate the contributions of the two relaxation modes, respectively.

0.422 M is shown in Figure 6. Strict analysis of the dielectric spectrum was performed according to the method described in section 3.1 and other research.\(^{42}\) The dielectric loss spectrum was well presented by eq 1 with two Cole–Cole terms (see the black solid line in Figure 6). The fitting result demonstrates that the dielectric spectrum of asymmetrical distribution includes two relaxation processes (or relaxation modes) which were caused by two types of water: the "bulk water" and the "bound water" interacted with C6mimBr. Similar results were also found for all C6mimBr concentrations, and the values of the fitting variables are summarized in Table 3. It can be seen that the relaxation time for both bulk water and bound water increases faintly with the increase of C6mimBr concentration: \(\tau_{bound} \) for bulk water increases from 9.36 to 14.47 ps, which is slightly larger than that of pure water (about 9 ps\(^{43}\)), while \(\tau_{bound} \) for bound water increases from 19.36 to 27.30 ps in the concentration range of 0.4–2.11 M, which also is consistent with the correlation time from nuclear magnetic relaxation.\(^{44}\) In addition, the dielectric increment of bound water \(\Delta \varepsilon_{bound} \) gradually increases from 15.86 to 22.36 and that of bulk water \(\Delta \varepsilon_{bulk} \) gradually decreases from 56.13 to 17.28. All these changes are related to the interactions between water molecules and the head groups and the alkyl tails of C6mimBr.

3.4.2. Number of Bound Water. Cavell equation\(^{45}\) is generally used to describe the relation between the dielectric increment \(\Delta \varepsilon \) and the effective dipole moment \(\mu \) of the species responsible for a relaxation process

\[
\frac{2\varepsilon_0 + 1}{\varepsilon_1} \Delta \varepsilon_i = \frac{N_i \mu_i^2}{k_B T \varepsilon_0}
\]

where \(N_i \), \(k_B \), and \(T \) are the Avogadro constant, Boltzmann constant, and absolute temperature, respectively, and \(\mu_i \) is the molar concentration of the species \(i \) in mixtures. For the pure water, eq 9 is rewritten as follows:

\[
\frac{2\varepsilon_0 + 1}{\varepsilon_1} \Delta \varepsilon_0 = \frac{N_0 \mu_0^2}{k_B T \varepsilon_0}
\]

From eqs 8 and 9, we get the following equation from which the concentration of bulk water in C6mimBr aqueous solution can be calculated

\[
\varepsilon_\text{bulk} = \frac{\Delta \varepsilon_\text{bulk} \rho_0^0}{\Delta \varepsilon_0^0 \rho_0^0 M_w}
\]

where \(\rho_0^0 \) and \(M_w \) are the density and the molar mass of pure water, respectively. The number of bound water per C6mimBr molecule \(Z_i \) can be described as follows

\[
Z_i = \frac{\varepsilon_\text{bound}}{\varepsilon} = \frac{(1 - \nu) M_2 \Delta \varepsilon_\text{bound} \rho_0^0 M_w}{\Delta \varepsilon_0^0 \rho_0^0 M_w}
\]
relaxation time are di

 ifacelected enthalpy of bulk water

some acidic sites localized at H-2, H-4, and H-5 of the imidazolium ring and other sites localized at the alkyl chain, water molecules bonded on these about 8 acidic sites and stagnated in micelle inner, as shown in Figure 7. In addition, the result reported by Buchner et al.49 that the number of bound water per cation in C6mimBr micelle is 9 is also comparable with our result for C6mimBr.

3.5. Orientation Dynamics of Water in C6mimBr Solution. It is generally known that the temperature dependence of dielectric spectra can provide thermodynamic quantities for assessing relaxation processes, and then various interactions in C6mimBr solution can be discussed. The relationship between relaxation time from dielectric measurements and temperature can be determined using the following Eyring equation:

\[
\ln \tau = \ln \left(\frac{h}{k_B} \right) - \frac{\Delta S}{R} + \frac{\Delta H}{RT}
\]

(12)

where \(h \) is Planck’s constant and \(\Delta H \) and \(\Delta S \) are the activation enthalpy and activation entropy of relaxation processes, respectively, which are all relevant to the interaction energy between water molecules and C6mimBr. The ln \(\tau \) are plotted as a function of 1/\(T \) for 0.633 M C6mimBr solution in Figure 8 using the relaxation time data for bulk- and bound-water relaxation processes in Table 3. Obviously, both of the relaxation processes show a good linear relation between ln \(\tau \) and 1/\(T \) in the measured temperature range. From the slope and intercept of fitting line, \(\Delta H \) and \(\Delta S \) were estimated and are listed in Table 5 together with the data for pure water data taken from ref 43.

As shown in Table 5, the values of \(\Delta H \) and \(\Delta S \) of bound and bulk water obtained from the temperature dependence of relaxation time are different from those of pure water: the activation enthalpy of bulk water \(\Delta H_{\text{bulk}} \) is slightly smaller than that of pure water, while that of bound water \(\Delta H_{\text{bound}} \) is much smaller. That is, when the bound water reoriented to the external electric field, it is easier to break the hydrogen bonds of C6mimBr–water than water–water hydrogen bonds. This implies that the interaction between the electronegative atom O in water molecule and acidic sites in C6mim+ are weaker compared with the hydrogen bond interactions between water molecules. In addition, the dielectric relaxation time for the reorganization of water molecules is directly related to the average number of hydrogen bonds \(\bar{n}_{\text{HB}} \) that must be broken to obtain “mobile” water molecules, and \(\bar{n}_{\text{HB}} \) can be calculated by eq 13 using the values of \(\Delta H \) in Table 5:

\[
\bar{n}_{\text{HB}} = \frac{\Delta H}{\Delta_{\text{HB}}H} + 1
\]

(13)

Here, \(\Delta_{\text{HB}}H (= 10.9 \pm 0.4 \text{ kJ mol}^{-1}) \) is the strength of the H2O–H2O hydrogen bonds in the pure water. From this equation, the average number of hydrogen bonds of bulk water \(\bar{n}_{\text{HB(bulk–water)}} \) was calculated to be 2.2, being close to that of pure water (2.4615), and \(\bar{n}_{\text{HB(bound–water)}} \) is 1.64, being less than that of pure water. This shows that water molecules which were bonded on the C6mimBr formed smaller clusters (constructral water) with the water molecules around C6mimBr, causing a physical change in the microenvironment around the C6mimBr molecules. It is also found from Table 5 that the activation entropy \(\Delta S \) for both bound water and bulk water are smaller than that of pure water and the thermodynamic quantities for the latter are much closer to that of pure water. It is worth noting that the value of \(\Delta S \) for bound water is negative; this may suggest that the orientation of hydrogen bond dipoles between water and C6mim+ under electrical field resulted in a more ordered cluster structure (see Scheme 2). By contrast, the bulk water molecule reoriented with the adjacent water molecules under external electrical field. This cooperative orientation of bulk water molecules reduced the ordering of the system; as a result, the activation entropy of system goes up.

![Figure 7. Number of bound water per C6mimBr calculated from eq 11. The scheme represents the interaction sites of C6mim+ and water molecules in the stable micelle.](image)

![Figure 8. Plots of ln \(\tau \) against 1/\(T \) (taking the C6mimBr concentration = 0.633 M for example). The red solid lines represent the best-fit curves with eq 12.](image)

<table>
<thead>
<tr>
<th>C (M)</th>
<th>(\rho) (g/L)</th>
<th>(Z)</th>
<th>Sample</th>
<th>(\Delta H) (kJ/mol)</th>
<th>(\Delta S) (J K-1 mol-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.422</td>
<td>1013.2</td>
<td>19.4</td>
<td>pure water</td>
<td>16.0935</td>
<td>21.143</td>
</tr>
<tr>
<td>0.633</td>
<td>1018.2</td>
<td>19.9</td>
<td>bound water</td>
<td>6.68</td>
<td>-14.62</td>
</tr>
<tr>
<td>0.844</td>
<td>1020.6</td>
<td>19.9</td>
<td>bulk water</td>
<td>13.07</td>
<td>10.32</td>
</tr>
<tr>
<td>0.971</td>
<td>1023.5</td>
<td>17.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.055</td>
<td>1030.3</td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.182</td>
<td>1034.6</td>
<td>13.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.266</td>
<td>1042.6</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.688</td>
<td>1059.8</td>
<td>8.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>1071.5</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Density and the Number of Bound Water per C6mimBr in Different Concentrations at 296.7 K.

Table 5. Eyring Activation Enthalpy and Activation Entropy of 0.633 M C6mimBr Solution.
4. CONCLUSIONS

The dielectric relaxation processes of the C_{6}mimBr—water system were investigated in detail in varying C_{6}mimBr concentrations and temperatures. The surface activity parameters CMC and γ were obtained by analyzing dc conductivity in different concentrations and temperatures. Further, the thermodynamic quantities of the micellization of C_{6}mimBr, ΔG_{mic}, ΔH_{mic} and ΔS_{mic} were calculated. We found that the mechanism of micellization depends on the temperature: the micelle formation process for C_{6}mimBr is controlled by enthalpy effect at low temperature, which was decided by the interaction energies of C_{6}mimBr—water and C_{6}mimBr—C_{6}mimBr, i.e., the sum of the contributions from the thermal effect of the bond broken and formed, while the micelle formation process is entropically driven at high temperature, which was decided by the order distribution of component of micelle.

We found that two relaxation processes which originated from orientation polarization of the “bulk water” and “bound water” interacted with C_{6}mimBr by analyzing the dielectric spectroscopy. We calculated for the first time the number of bound water per C_{6}mim" in the micellar core from the relaxation parameters obtained experimentally and showed that the number of bound water is consistent with the number of acidic sites in C_{6}mim". The essence of cooperative orientation dynamics of water in different environments was described based on the activation enthalpy and activation entropy of relaxation processes: the orientation of bound water resulted in a more ordered cluster structure and the cooperative orientation of bulk water molecules reduced the ordering of system.

In short, this work reports the thermodynamics and various hydrogen-bond interactions of the micellization process of C_{6}mimBr in water and the structural reorganization of water molecules in this process. Our findings gave a new insight into the micellization of ILs surfactants and their aggregation dynamics and also demonstrated the advantage of dielectric analysis method in evaluating the physical chemistry properties of the dispersion system.

“Scheme 2. Orientation of Water Molecules under the External Electric Field“

“The black arrow represents the dipole of hydrogen bonds between water and C_{6}mim". The blue arrow represents the dipole orientation of bound water. The scheme in the dashed ring shows the ordered cluster structure surrounding the C_{6}mim".

